Past Year JEE Questions

Questions

Quetion: 01

A plane passing through the points (0, -1, 0) and (0, 0, 1) and making an angle $\frac{\pi}{4}$ with the plane y - z + 5 = 0, also passes through the point A. $(\sqrt{2}, 1, 4)$ B. $(-\sqrt{2}, 1, 4)$ C. $(-\sqrt{2}, -1, -4)$ D. $(\sqrt{2}, -1, 4)$

Solutions

Solution: 01

Explanation

Let ax + by + cz = 1 be the equation of the plane

it passed through point (0, -1, 0).

∴ -b = 1

⇒ b = -1

Also it passes through point (0, 0, 1)

∴ c = 1

So the plane is ax - y + z = 1.

This plane an angle $\frac{\pi}{4}$ with the plane y – z + 5 = 0.

Normal to the plane ax - y + z = 1 is

$$\vec{a} = a\hat{i} - \hat{j} + \hat{k}$$

Normal to the plane y - z + 5 = 0 is

$$\vec{b} = \hat{j} - \hat{k}$$

$$\cos \theta = \left| \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \right|$$

$$\Rightarrow \frac{1}{\sqrt{2}} = \left| \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \right|$$

$$\Rightarrow \frac{|0 - 1 - 1|}{\sqrt{k^2 + 1 + \sqrt{l^2 + 1^2}}} = \frac{1}{\sqrt{2}}$$

 $\Rightarrow a^2 + 2 = 4$

 \Rightarrow a = $\pm \sqrt{2}$

:. Equation of plane

 $\pm \sqrt{2}x - y + z = 1$

Now by checking each options you can see

equation - $\sqrt{2}x$ - y + z = 1 satisfy by the point $(\sqrt{2}, 1, 4)$.